【蓝桥杯】国赛知识梳理


动态规划

基础

线性DP

image-20240526132127462

image-20240526132140926

image-20240526132149001

动态规划分析步骤

image-20240526132222766

模板题——破损的楼梯

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
"""
3367 破损的楼梯
https://www.lanqiao.cn/problems/3367/learning

这是一个典型的线性DP问题,dp[i]表示到达第i阶楼梯的方法数
状态转移方程:dp[i]=dp[i-1]+dp[i-2]
状态压缩:dp[i]只与dp[i-1]和dp[i-2]有关,所以可以压缩
时间复杂度:O(n)
空间复杂度:O(n)
"""
N = int(1e5 + 10)
mod = int(1e9 + 7)
n, m = map(int, input().split())
a = list(map(int, input().split()))
vis = [0] * N
for i in a: vis[i] = 1
dp = [0] * N
dp[0] = 1
dp[1] = 1 - vis[1]
for i in range(2, n + 1):
if vis[i]:
continue
dp[i] = (dp[i - 1] + dp[i - 2]) % mod
print(dp[n])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
n,m=map(int,input().split())
a=list(map(int,input().split()))
dp=[0]*(n+1)
tp=[0]*(n+1)
for i in a:
tp[i]=1
dp[0]=1
dp[1]=1-tp[1]
for i in range(2,n+1):
if tp[i]==1:
continue
dp[i]=dp[i-1]+dp[i-2]
mod=10**9+7
print(dp[i]%mod)

二维DP

image-20240526132351934

分析步骤

image-20240526132407561

模板题——数字三角形

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import os
import sys

# 请在此输入您的代码
N = int(input())
dp = [list(map(int, input().split())) for _ in range(N)]
for i in range(1, N):
for j in range(i + 1):
if j == 0:
dp[i][j] += dp[i - 1][j]
elif j == i:
dp[i][j] += dp[i - 1][j - 1]
else:
dp[i][j] += max(dp[i - 1][j - 1], dp[i - 1][j])
print(max(dp[N - 1]))

image-20240526132533080

image-20240526132546231

模板题——摆花

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
'''
n种花凑 m盆 每种<a[i]
1.分解子问题
前i种花,一共j盆,答案是dp[n][m]
2.状态转移
前i种花有j盆方案数 如何由前i-1种有j盆得出.
以下每一种选择是一种方案
第i种花可以选0盆,前i-1种花有j盆:dp[i][j] = dp[i-1][j]
第i种花可以选1盆,前i-1种花有j-1盆::dp[i][j] = dp[i-1][j-1]
...
第i种花可以选a[i]盆,前i-1种花有j-a[i]盆::dp[i][j] = dp[i-1][j-a[i]]
3.边界条件,每种花都不选
前i种花 0盆 是 一种方案 dp[i][0] = 1
'''
MOD = 10 ** 6 + 7
n, m = map(int, input().split())
a = [0] + list(map(int, input().split()))
dp = [[0] * (m + 1) for i in range(n + 1)]
for i in range(n+1):
dp[i][0] = 1
# 状态转移,当下做出的选择,利用之前dp,求dp[i][j]
for i in range(1,n+1):
for j in range(1,m+1):
for k in range(min(a[i],j)+1):
dp[i][j]+=dp[i-1][j-k]
dp[i][j]%=MOD
print(dp[n][m])

模板题——选数异或

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
n,x = map(int,input().split())
a = [0] + list(map(int,input().split()))
Mod = 998244353
'''
dp[i][j]前i个正整数有j个子序列异或成 j 的方案;答案dp[n][x]
dp[i][j] = 选第i个数字 + 不选第i个数字
= dp[i - 1][j ^ a[i]] + dp[i - 1][j]
(因为如果选了第i个数字,那么a[i] ^ 前数 = j, 所以:前数 = j ^ a[i])
'''
dp = [[0] * (64) for _ in range(n + 1)]
# 初始化为 0
dp[0][0] = 1

for i in range(1, n + 1):
for j in range(64):
dp[i][j] = (dp[i-1][j] + dp[i-1][j ^ a[i]]) % Mod
print(dp[n][x])

LIS

最长上升子序列

image-20240526132915221

image-20240526132923043

模板题——蓝桥勇士

1
2
3
4
5
6
7
8
n=int(input())
a=[0]+list(map(int,input().split()))
dp=[1]*(n+1)
for i in range(1,n):
for j in range(i+1,n+1):
if a[i]<a[j]:
dp[j]=max(dp[j],dp[i]+1)
print(max(dp))

模板题——合唱队形

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
n = int(input())
a = [0] + list(map(int, input().split()))
dp1 = [0] * (n + 1) # dp1[i]表示以i结尾的最长上升子序列长度
dp2 = [0] * (n + 1) # dp2[i]表示以i出发的最长下降子序列长度

for i in range(1, n + 1):
dp1[i] = 1
for j in range(1, i):
if a[i] > a[j]:
dp1[i] = max(dp1[i], dp1[j] + 1)

for i in range(n, 0, -1):
dp2[i] = 1
for j in range(i + 1, n + 1):
if a[i] > a[j]:
dp2[i] = max(dp2[i], dp2[j] + 1)

ans = max((dp1[i] + dp2[i] - 1) for i in range(1, n + 1))
print(n-ans)

LCS

最长公共子序列

image-20240526133212404

image-20240526133222560

模板题——最长公共子序列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import os
import sys
# 这段代码实现的是计算两个序列(a 和 b)的最长公共子序列(Longest Common Subsequence, LCS)的长度。LCS 是一种在计算两个序列相似度时常用的度量方法。这个问题通常通过动态规划来解决。现在,我将逐步解释这段代码的各个部分:

# 输入处理
n, m = map(int, input().split())
a = [0] + list(map(int, input().split()))
b = [0] + list(map(int, input().split()))
# 首先,通过 input().split() 获取两个整数 n 和 m,分别表示序列 a 和 b 的长度。
# 接着,读取这两个序列,并在序列前面各自加上一个 0 作为哨兵值。这样做是为了让序列的索引从 1 开始,方便后续操作。
# 初始化动态规划数组
dp = [[0] * (m + 1) for _ in range(2)] # 注意这里是 m,不是 n
now = 0; old = 1
# 初始化一个二维动态规划数组 dp,但这里只用到了两行(range(2)),目的是节省空间。因为在计算当前状态时,只需要用到前一行(即上一状态)的数据。m + 1 是因为考虑到从 0 开始到 m 的所有可能位置。
# now 和 old 变量用来在这两行之间切换,表示当前行和上一行。
# 动态规划过程
for i in range(1, n + 1):
now, old = old, now
for j in range(1, m + 1):
dp[now][j] = max(dp[now][j - 1], dp[old][j])
if a[i] == b[j]:
dp[now][j] = max(dp[now][j], dp[old][j - 1] + 1)
# 这部分是动态规划的核心。
# 外层循环遍历序列 a,内层循环遍历序列 b。
# dp[now][j] = max(dp[now][j - 1], dp[old][j]):当前状态是基于之前状态的最大值,这表示如果当前字符不匹配,LCS 长度不变。
# 如果当前位置的字符相等(a[i] == b[j]),则检查上一个状态的值并加一,即 dp[now][j] = max(dp[now][j], dp[old][j - 1] + 1)。这反映了找到了一个公共元素,因此当前的最长公共子序列长度增加了 1。
# 输出结果
print(dp[now][m])
# 最后,打印出最长公共子序列的长度,即在遍历完两个序列后,dp 数组最后一个元素(dp[now][m])的值。
# 通过这种方式,代码高效地计算了两个序列的最长公共子序列的长度,同时通过只使用两行的动态规划数组大大减少了空间复杂度。

image-20240526133424736

背包DP

01背包

image-20240526133609206

image-20240526133623292

image-20240526133631379

模板题——小明的背包1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#dp[i][j]    前i件物品,总体积不超过j 的最大价值

n,v=map(int,input().split())
dp=[[0]*(v+1) for i in range(n+1)]

for i in range(1,n+1):
wi,vi=map(int,input().split())
for j in range(0,v+1):
if j>=wi:
dp[i][j]=max(dp[i-1][j],dp[i-1][j-wi]+vi)
else:
dp[i][j]=dp[i-1][j]

print(dp[n][v])
滚动数组优化

image-20240526133913024

image-20240526133922038

image-20240526133928502

1
2
3
4
5
6
7
n,V=map(int,input().split())
dp=[0]*(V+1)
for i in range(1,n+1):
w,v=map(int,input().split())
for j in range(V,w-1,-1):
dp[j]=max(dp[j],dp[j-w]+v)
print(dp[V])

完全背包

image-20240526134436937

image-20240526134445527

image-20240526134453737

image-20240526134501798

模板题——小明的背包2

image-20240526134640485

1
2
3
4
5
6
7
8
9
10
11
12
# dp[i][j]=max(dp[i-1][j],dp[i][j-wi]+vi)  不取或在先前基础上取第i种(所以可以取多次)

n,v=map(int,input().split())
dp=[[0]*(v+1) for i in range(n+1)]
for i in range(1,n+1):
wi,vi=map(int,input().split())
for j in range(0,v+1):
if (j>=wi):
dp[i][j]=max(dp[i-1][j],dp[i][j-wi]+vi)
else:
dp[i][j]=dp[i-1][j]
print(dp[n][v])
滚动数组优化
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import os
import sys
N, V = map(int, input().split())
items = []
for _ in range(N):
w, v = map(int, input().split())
items.append((w, v))
dp = [0] * (V + 1)
for i in range(1, V + 1):
for w, v in items:
if i >= w:
dp[i] = max(dp[i], dp[i - w] + v)
print(dp[V])
'''
读取输入的商场物品数量N和小明的背包容量V,以及每种物品的体积和价值。
初始化一个长度为V+1的动态规划数组dp,dp[i]表示背包容量为i时所能获得的最大价值。
使用动态规划求解,外层循环遍历背包容量从1到V,内层循环遍历每种物品,更新dp[i]的值为dp[i-w]+v和当前dp[i]的较大值。
输出dp[V]即为小明所能获得的最大价值。
'''

多重背包

image-20240526134702358

image-20240526134710379

模板题——小明的背包3

image-20240526134904431

image-20240526134915203
image-20240526134922223
image-20240526134930677

1
2
3
4
5
6
7
8
9
10
11
12
#dp[i][j] =max(dp[i][j],dp[i-1][j-k*wi]+k*vi)  k属于(0,si)

n,v=map(int,input().split())
dp=[[0]*(v+1) for i in range(n+1)]
for i in range(1,n+1):
wi,vi,si=map(int,input().split())
for j in range(0,v+1):
for k in range(0,min(si,j//wi)+1):

dp[i][j]=max(dp[i][j],dp[i-1][j-k*wi]+k*vi)

print(dp[n][v])
滚动数组优化
1
2
3
4
5
6
7
8
9
10
11
N,V=map(int,input().split())
w,v,s=[[0]*(N+1) for _ in range(3)]
dp=[0 for _ in range(V+1)]
for i in range(1,N+1):
w[i],v[i],s[i]=map(int,input().split())
for i in range(1,N+1):
for j in range(s[i]):
for k in range(V,0,-1):
if w[i]<=k:
dp[k]=max(dp[k-w[i]]+v[i],dp[k])
print(dp[-1])

二维费用背包&分组背包

image-20240526135531593

image-20240526135538566

模板题——小蓝的神秘行囊

1
2
3
4
5
6
7
8
9
10
11
import sys

n, v, m = map(int, sys.stdin.readline().split())
dp = [[0]*(v + 1) for _ in range(m + 1)]
for _ in range(n):
volume, mass, value = map(int, sys.stdin.readline().split())
for i in range(m, 0, -1):
for j in range(v, 0, -1):
if i >= mass and j >= volume:
dp[i][j] = max(dp[i][j], dp[i-mass][j-volume] + value)
print(dp[m][v])
1
2
3
4
5
6
7
8
9
10
n,v,m=map(int,input().split())
dp=[[0]*(m+1) for i in range(v+1)]

for i in range(1,n+1):
vi,mi,wi=map(int,input().split())
for j in range(v,vi-1,-1):
for k in range(m,mi-1,-1):
dp[j][k] =max(dp[j][k],dp[j-vi][k-mi]+wi)

print(dp[v][m])

树形DP

自上而下树形DP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from collections import defaultdict

n = int(input())
val = [0] + [int(x) for x in input().split()]
edges = defaultdict(list)
f = [[0, val[i]] for i in range(n + 1)]

def add_edge(from_node, to_node):
edges[from_node].append(to_node)

def dfs(u, fa):
for v in edges[u]:
if v == fa:
continue
dfs(v, u)
f[u][0] += max(f[v][0], f[v][1])
f[u][1] += f[v][0]

for _ in range(n - 1):
u, v = map(int, input().split())
add_edge(u, v)
add_edge(v, u)

dfs(1, 0)
print(max(f[1][0], f[1][1]))

自下而上树形DP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import sys
from collections import defaultdict

N = 100005
a = [0]*N
dp = [[0]*2 for _ in range(N)]
e = defaultdict(list)

def dfs(u):
for v in e[u]:
dfs(v)
dp[u][1] += dp[v][0]
dp[u][0] += max(dp[v])
dp[u][1] += a[u]

def main():
global N, a, dp, e
n = int(sys.stdin.readline())
st = set(range(1, n+1))
for i in range(1, n+1):
a[i] = int(sys.stdin.readline())
for _ in range(1, n):
x, y = map(int, sys.stdin.readline().split())
e[y].append(x)
st.discard(x)
rt = st.pop()
dfs(rt)
print(max(dp[rt]))

if __name__ == "__main__":
main()

路径相关树形DP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
N = 2005
e = [[] for _ in range(N)]
w = [[] for _ in range(N)]
dp = [0]*N
n, m, k = 0, 0, 0
dep = [0]*N
f = [0]*N
t = []

def dfs(u):
global dp, e, w
for v in e[u]:
dfs(v)
dp[u] += dp[v]
for t in w[u]:
sum = dp[u]
for nw in t['vec']:
sum -= dp[nw]
for v in e[nw]:
sum += dp[v]
dp[u] = max(dp[u], sum + t['val'])

def main():
global n, m, f, e, dep, dp, w, t
n, m = map(int, input().split())
for i in range(2, n+1):
f[i] = int(input())
e[f[i]].append(i)
dep[i] = dep[f[i]] + 1
for i in range(1, m+1):
x, y, val = map(int, input().split())
t.clear()
while x != y:
if dep[x] > dep[y]:
t.append(x)
x = f[x]
else:
t.append(y)
y = f[y]
t.append(x)
w[x].append({'vec': list(t), 'val': val})
dfs(1)
print(dp[1])

if __name__ == "__main__":
main()

换根DP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from collections import defaultdict
def dfs(u, dep, fa): # 传入当前节点u,深度,父节点
global sum_depth
sum_depth += dep # 加上当前节点u的深度
# 遍历u的所有子节点
for v in e[u]:
if v == fa:
continue
dfs(v, dep + 1, u) # 遍历到子节点
siz[u] += siz[v] # 通过这一步,可以统计u所有子节点数
def dfs2(u, fa): # 用来跟新其余节点为根的解
for v in e[u]:
if v == fa:
continue
# dp[v] = dp[u] - siz[v] + (n - siz[v])
dp[v] = dp[u] - 2 * siz[v] + n # 当前节点v的解=左边变化值+右边变化值
dfs2(v, u)


n = int(input())
dp = [0] * (n + 1) # 用来更新不同节点为根时的深度和
siz = [1] * (n + 1) # 以i为根节点,其左子树的节点数,初始值为1表示仅包含该节点
# 建树
e = defaultdict(list)
for _ in range(n - 1):
u, v = map(int, input().split())
e[u].append(v)
e[v].append(u)
# 第一遍dfs,找到以1为根节点的深度和
sum_depth = 0 # 用来记录深度和
dfs(1, 0, 0)
# 第二遍dfs,求出其余点作为根的答案
dp[1] = sum_depth # 6
dfs2(1, 0) # dp=[0, 6, 5, 9, 8, 8]
print(max(dp))

区间DP

image-20240526140152840

image-20240526140205963

普通区间DP

模板题——石子合并

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
n = int(input())
a = [0] + list(map(int, input().split()))
f = [[float('inf')] * (n+1) for _ in range(n+1)]

for i in range(1, n+1):
f[i][i] = 0
a[i] += a[i-1]

for length in range(2, n+1):
for i in range(1, n-length+2):
j = i + length - 1
for k in range(i, j):
f[i][j] = min(f[i][j], f[i][k] + f[k+1][j] + a[j] - a[i-1])

print(f[1][n])

模板题——涂色

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
s = input()
n = len(s)
f = [[float('inf')] * n for _ in range(n)]

for i in range(n):
f[i][i] = 1

for length in range(2, n+1):
for i in range(n - length + 1):
j = i + length - 1
if s[i] == s[j]:
f[i][j] = min(f[i + 1][j], f[i][j - 1])
else:
for k in range(i, i + length - 1):
f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j])

print(f[0][n - 1])

模板题——制作回文串

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
m, n = map(int, input().split())
s = input()
w1 = [0] * 30
w2 = [0] * 30
f = [[0] * n for _ in range(n)]

for i in range(m):
ch, weight1, weight2 = input().split()
w1[ord(ch) - ord('a')] = int(weight1)
w2[ord(ch) - ord('a')] = int(weight2)

for length in range(2, n+1):
for i in range(n - length + 1):
j = i + length - 1
if s[i] == s[j]:
if length == 2:
f[i][j] = 0
else:
f[i][j] = f[i + 1][j - 1]
else:
f[i][j] = min(
f[i + 1][j] + min(w1[ord(s[i]) - ord('a')], w2[ord(s[i]) - ord('a')]),
f[i][j - 1] + min(w1[ord(s[j]) - ord('a')], w2[ord(s[j]) - ord('a')])
)

print(f[0][n - 1])

环形区间DP

模板题——能量项链

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
n = int(input())
v = [0] * (2 * n + 2)
a = [0] + list(map(int, input().split()))

for i in range(1, n + 1):
v[i] = a[i]
v[i + n] = v[i]

f = [[0] * (2 * n + 1) for _ in range(2 * n + 1)]

for length in range(2, n + 1):
for i in range(1, 2 * n - length + 2):
j = i + length - 1
for k in range(i, j):
f[i][j] = max(f[i][j], f[i][k] + f[k + 1][j] + v[i] * v[k + 1] * v[j + 1])

ans = 0
for i in range(1, n + 1):
ans = max(ans, f[i][i + n - 1])

print(ans)

状压DP

image-20240526141319988

image-20240526141327177

模板题——例1

image-20240526141355192

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
MAXN = 105
N, M, K = map(int, input().split())
a = [0] * MAXN
f = [float('inf')] * (1 << 20)

for i in range(N):
for j in map(int, input().split()):
a[i] |= 1 << (j - 1)

f[0] = 0

for i in range(N):
for S in range(1 << M):
if f[S] > MAXN:
continue
f[S | a[i]] = min(f[S | a[i]], f[S] + 1)

print(f[(1 << M) - 1] if f[(1 << M) - 1] < MAXN else -1)

模板题——例2

image-20240526141422932

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import math

maxn = 2100000
f = [float('inf')] * maxn
lowbit = [0] * maxn
line = [[0] * 20 for _ in range(20)]
x = [0.0] * maxn
y = [0.0] * maxn
eps = 1e-8

def equ(a1, b1, c1, a2, b2, c2):
y = (a1 * c2 - a2 * c1) / (a1 * b2 - a2 * b1)
x = (c1 - b1 * y) / a1
return x, y

for i in range(1, (1 << 18)):
j = 1
while (i & (1 << (j - 1))):
j += 1
lowbit[i] = j

n = int(input())
for i in range(1, n + 1):
x[i], y[i] = map(float, input().split())

for i in range(1, n + 1):
for j in range(1, n + 1):
if math.isclose(x[i], x[j], abs_tol=eps):
continue
a, b = equ(x[i] * x[i], x[i], y[i], x[j] * x[j], x[j], y[j])
if math.isclose(a, 0, abs_tol=eps):
continue
for k in range(1, n + 1):
if math.isclose(a * x[k] * x[k] + b * x[k], y[k], abs_tol=eps):
line[i][j] |= (1 << (k - 1))

for i in range(1, (1 << n)):
j = lowbit[i]
f[i | (1 << (j - 1))] = min(f[i | (1 << (j - 1))], f[i] + 1)
for k in range(1, n + 1):
f[i | line[j][k]] = min(f[i | line[j][k]], f[i] + 1)

print(f[(1 << n) - 1])

数位DP

期望DP

数据结构

链表,栈,队列

链表

image-20240524154910861

image-20240524154926348
image-20240524154959997

模板题——约瑟夫环

1
2
3
4
5
6
n,k,m=map(int,input().split())
a=list(range(1,n+1))
i=k-1
while a:
i=(i+(m-1))%len(a)
print(a.pop(i))

image-20240524155117734

模板题——小蓝的括号串1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
n=int(input())
s=input()
a=[]
ok=True
for c in s:
if c == '(':
a.append(c)
else:
if len(a) == 0:
ok = False
break
a.pop()
if ok and len(a) == 0:
print('Yes')
else:
print('No')

队列

image-20240524173345373

image-20240524173355058

image-20240524173423272

模板题——队列操作

1
2
3
4
5
6
7
8
9
10
11
12
13
N=int(input())
a=[]
for i in range(N):
s=list(map(int,input().split()))
if s[0]==1:
a.append(s[1])
elif s[0]==2:
if a:
print(a.pop(0))
else:
print("no")
else:
print(len(a))

image-20240524175734507

image-20240524175709055

image-20240524180001397

优先队列

image-20240524182115097

image-20240524182127911

image-20240524182141588

模板题——小蓝的神奇复印机

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from queue import PriorityQueue,Queue
N,X=map(int,input().split())
a=list(map(int,input().split()))
q=Queue()
pq=PriorityQueue()
for i,x in enumerate(a):
q.put((i,x))
pq.put(-x)
time=0
while True:
i,x=q.get()
if -x==pq.queue[0]:
pq.get()
time+=1
if i==X:
print(time)
break
else:
q.put((i,x))

ST表

RMQ问题

image-20240524183506581
image-20240524183726055
image-20240524183742068
image-20240524183753258
image-20240524183803151

并查集

基础并查集

基础

image-20240524194242229

image-20240524194253527
image-20240524194301781
image-20240524194309669
image-20240524194317881

模板题——蓝桥幼儿园
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# def Findroot(x):
# while x!=p[x]:
# x=p[x]
# return x
'''使用路径压缩'''
def Findroot(x):
if x==p[x]:return x
#路径压缩
p[x]=Findroot(p[x])
return p[x]
def Merge(x,y):
rootx,rooty=Findroot(x),Findroot(y)
p[rootx]=rooty
def Query(x,y):
rootx,rooty=Findroot(x),Findroot(y)
return rootx==rooty
n,m=map(int,input().split())
p=list(range(n+1))
for _ in range(m):
op,x,y=map(int,input().split())
if op ==1:
Merge(x,y)
else:
if Query(x,y):
print("YES")
else:
print("NO")

路径压缩

image-20240524195007281

模板题——星球大战
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import sys
M = 200010; N = 2 * M
n, m = map(int, input().split())
father = [0] * (n + 10) #并查集板块
def init():
for i in range(n + 10):
father[i] = i
def find_father(x):
if x != father[x]: father[x] = find_father(father[x])
return father[x]
def unite(x, y):
father[find_father(x)] = find_father(y)
come = [0] * N; to = [0] * N; #存储每个边
g = [[] for _ in range(N)] #邻接表
for i in range(m):
a, b = map(int, input().split())
g[a].append(b); g[b].append(a)
come[i] = a; to[i] = b
broken = [0] * (n + 10) #记录每个点是否被修坏
destroy = []
k = int(input())
for i in range(k):
b = int(input())
broken[b] = 1
destroy.append(b)
init()
res = n - k #先计算所有剩下星球的连通块数,(最后一轮的结果)
for i in range(m):
l = come[i]; r = to[i]
fl, fr = find_father(l), find_father(r)
if not broken[l] and not broken[r] and fl != fr:
res -= 1
#unite(l, r)
father[fl] = fr
ans = [res]
for i in range(len(destroy) - 1, -1, -1): #顺序破坏,相当于倒序修建
c = destroy[i]
broken[c] = 0
res += 1 #修好一个星球,连通块会多一个
for j in g[c]:
fc, fp = find_father(c), find_father(j)
if not broken[j] and fc != fp:
res -= 1
father[fc] = fp
ans.append(res)
for i in range(len(ans) - 1, -1, -1): #倒序输出结果
print(ans[i])

可撤销并查集

image-20240524203431727

image-20240524203449967

image-20240524203621861

image-20240524203634004
image-20240524203643547
image-20240524203712193

image-20240524203728659

image-20240524203741431

image-20240524203752845

image-20240524203808480

image-20240524203837465

image-20240524203855506

image-20240524203906020

可撤销并查集定义

image-20240524203916807

image-20240524203959912
image-20240524204009818
image-20240524204018333
image-20240524204035190
image-20240524204043804
image-20240524204055615
image-20240524204106056
image-20240524204120154

算法原理

image-20240524204147436
image-20240524204158246

带权并查集

image-20240526102401075

image-20240526102412755

image-20240526102423880

image-20240526102443080

image-20240526102451528

树上问题

树的基本概念

image-20240526102633616
image-20240526102641495
image-20240526102651200

image-20240526102714548

二叉树

image-20240526102917869
image-20240526102815444

image-20240526102945303

模板题——完全二叉树的权值

1
2
3
4
5
6
7
8
9
10
import math

s = []
n = int(input())
x = list(map(int, input().split()))

deep = int(math.log(n, 2)) + 1 # 完全二叉树求深度公式
for i in range(deep): # 按层数来遍历
s.append(sum(x[2 ** i - 1:2 ** i + 2 ** i - 1])) # 切片出每层的节点,并计算其权值
print(s.index(max(s)) + 1) # 找出权值最大的层级,并返回其索引

image-20240526103231454

树的遍历

image-20240526103255622

先序遍历

image-20240526103305459

image-20240526103325159

中序遍历

image-20240526103335871

后序遍历

image-20240526103352924

层序遍历

image-20240526103409405

树的遍历

image-20240526103902993

image-20240526103916051
image-20240526103926976

模板题——欧涛爬树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import sys
sys.setrecursionlimit(100000)
input=sys.stdin.readline
def dfs(u,fa):#进行判断是否是叶子节点
path.append(s[u])
flag=True
for v in G[u]:
if v==fa:continue
dfs(v,u)
flag=False
if flag:
S.add(''.join(path))
path.pop()


while True:
try:
n=int(input())
#邻接表进行存放树
G=[[] for _ in range(n+1)]
s=' '+input()
for _ in range(n-1):
u,v=map(int,input().split())
G[u].append(v)
G[v].append(u)
path=[]
S=set()
dfs(1,-1)
print(len(S))
except:
break
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def read():
import sys
return sys.stdin.readline().strip()


def dfs(root, fa):
path.append(s[root])
flag = True
for to in vis[root]:
if to == fa:
continue
dfs(to, root)
flag = False
if flag:
result.add("".join(path))
path.pop()


# 多次输入模板
while True:
try:
n = int(read())
s = read()
vis = [[] for _ in range(n)]
for _ in range(n - 1):
u, v = map(int, read().split())
u -= 1
v -= 1
vis[u].append(v)
vis[v].append(u)
result = set()
path = []
dfs(0, -1)
print(len(result))
except:
break

树的直径与重心

树的直径

image-20240526104404857

image-20240526104428203

image-20240526104454203

模板题——直径

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import sys

input = sys.stdin.readline
sys.setrecursionlimit(100000)
def dfs(u, fa, pre=None):
global S
if d[u] > d[S]: S = u
for v, w in G[u]:
if v == fa: continue
d[v] = d[u] + w
if pre: pre[v] = u
dfs(v, u, pre)
n = int(input())
G = [[] for i in range(n + 1)]
d = [0] * (n + 1)
pre = [0] * (n + 1)
for _ in range(n - 1):
u, v, w = map(int, input().split())
G[u].append([v, w])
G[v].append([u, w])
S = 1
dfs(1, 0)
d[S] = 0
dfs(S, 0, pre)
L = [S]
L_list = set()
while S != 0:
L_list.add(S)
S = pre[S]
for u in L_list:
for i, (v, w) in enumerate(G[u]):
if v in L_list:
G[u][i] = [v, w - 1]
S = 1
dfs(1, 0)
d[S] = 0
dfs(S, 0)
L2 = d[S]
print(L)
print(L - L2)

image-20240526105912364

LCA

最近公共祖先

image-20240526105959804

image-20240526110010233

image-20240526110018355
image-20240526110031858
image-20240526110040710
image-20240526110052606

模板题——最近公共祖先LCA查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import sys

#设置deep数组表示深度。
#front数组,表示节点u,前2**i层的爹是谁???
n=int(input())
tree=[[] for _ in range(n+1)]
fornt=[[0]*(21) for _ in range(n+1)]#如果你是0你就是孤儿。
deep=[0]*(n+1)#0节点没有层数。
for i in range(n-1):
u,v=map(int,input().split())
tree[u].append(v)

def dfs(er,die):
if die==0:
deep[er]=1#这是第一层,同时,第一层也没有爹啊,也不需要更新如何层数相关节点。

else:
deep[er]=deep[die]+1#更新层数。
fornt[er][0]=die#上一层的点,就是die。
for cc in range(1,21):
if fornt[fornt[er][cc-1]][cc-1]!=0:

fornt[er][cc]=fornt[fornt[er][cc-1]][cc-1]
#倍增法。2**i层之上的点=
#2**(cc-1)上面的点的上面2**(cc-1)的点。就,无限套娃。

for i in tree[er]:
dfs(i,er)#儿子变成新的爹。
dfs(1,0)#儿子是根,爹不存在。

def find(x,y):
#第一步,拉升。将x拉到和y一个水平。一开始走2**20步,太大,就走2**19步,然后走一半,再走一半
#就像那个乌龟与跑步哥一样。二进制原理使得这个步数遍历后一定是一个高度。
for i in range(20,-1,-1):
if deep[fornt[x][i]]>=deep[y] and fornt[x][i]!=0:
x=fornt[x][i]#自动判断能走不能走,能走则走一大步。x提升到别的节点。

#此时提升必定一样了。
if x==y:
return x#原来你就是我爹!

else:#不是?我们再度提升吧!神明!
for i in range(20,-1,-1):
if fornt[x][i]!=fornt[y][i] and fornt[x][i]!=0 and fornt[y][i]!=0:#相等反而不能决定什么,因为可能不是最近的公共祖先
x=fornt[x][i]
y=fornt[y][i]
return fornt[y][0]#最后,y上面的就是自己的公共祖先。
q=int(input())
for i in range(q):
x,y=map(int,input().split())
if deep[x]<deep[y]:#我们设x是深节点。
x,y=y,x
print(find(x,y))

树上差分

image-20240526110829760
image-20240526110840432
image-20240526110850262
image-20240526110859590

问题引入

image-20240526110924343

image-20240526110933963

image-20240526110943437

image-20240526110952759

image-20240526111012615

image-20240526111135950

模板题——

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import sys
import math
from collections import defaultdict

maxn = 110000
n, k = map(int, sys.stdin.readline().split())
maxx = int(math.log2(n))
edge = defaultdict(list)
head = [0] * (n + 1)
dep = [0] * (n + 1)
dlt = [0] * (n + 1)
fa = [[0] * 20 for _ in range(n + 1)]
cnt = 0

def add_edge(a, b, dis):
global cnt
cnt += 1
edge[cnt] = [head[a], b, dis]
head[a] = cnt
cnt += 1
edge[cnt] = [head[b], a, dis]
head[b] = cnt

for _ in range(n - 1):
a, b, dis = map(int, sys.stdin.readline().split())
add_edge(a, b, dis)

dfs(1)

for _ in range(k):
a, b, x = map(int, sys.stdin.readline().split())
dlt[a] += x
dlt[b] += x
c = lca(a, b)
dlt[c] -= 2 * x

dfs1(1)

for i in range(1, n + 1):
print(dlt[i], end=' ')
print()

DFS序

image-20240526111342883

image-20240526111358571

image-20240526111411449

image-20240526111421595

image-20240526111429485

image-20240526111439242

image-20240526111454557

image-20240526111510842

image-20240526111525573

image-20240526111537764

image-20240526111549957

image-20240526111604828

image-20240526111613985
image-20240526111621233
image-20240526111628644
image-20240526111634702
image-20240526111645145
image-20240526111654060

模板题——异或和

dfs序和树状数组
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
n, m = map(int, input().split())
v = [0] + list(map(int, input().split()))
g = [[] for _ in range(n + 1)]
for _ in range(n - 1):
u, va = map(int, input().split())
g[u].append(va)
g[va].append(u)

tree = [0] * (n + 1)
a = [[0, 0] for _ in range(n + 1)] # 存dfs序
cnt = 0
def dfs(node, fa):
global cnt
cnt += 1
a[node][0] = cnt
for i in g[node]:
if i != fa:
dfs(i, node)
a[node][1] = cnt
dfs(1, 0)

def lowbit(x):
return x & (-x)

def update(x, d):
while x <= n:
tree[x] ^= d
x += lowbit(x)

def query(x):
ans = 0
while x:
ans ^= tree[x]
x -= lowbit(x)
return ans

for i in range(1, n + 1):
update(a[i][0], v[i])

for _ in range(m):
o = list(map(int, input().split()))
if o[0] == 2:
print(query(a[o[1]][1]) ^ query(a[o[1]][0] - 1))
else:
x, y = o[1], o[2]
update(a[x][0], v[x] ^ y)
v[x] = y
模拟暴力代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
n, m = map(int, input().split())
a = [0] + list(map(int, input().split()))
g = [[] for i in range(n + 1)]
for _ in range(n - 1):
c, d =map(int, input().split())
g[c].append(d)
g[d].append(c)

dep = [0] * (n + 1)
dep[1] = 1
def depth(node, fa):
for i in g[node]:
if i != fa:
dep[i] = dep[node] + 1
depth(i, node)
depth(1, 0)

def dfs(node):
for i in g[node]:
if dep[i] > dep[node]:
li.append(a[i])
dfs(i)

def query(n):
global li
li = [a[n]]
dfs(n)
ans = li[0]
for i in range(1, len(li)):
ans = ans ^ li[i]
print(ans)

def change(x, y):
a[x] = y

for _ in range(m):
o = list(map(int, input().split()))
if o[0] == 2: query(o[1])
else: change(o[1], o[2])

利用邻接表打印树结构,然后根据子树根节点寻找打印子树的元素,存到列表中,最后对列表的所有元素(即子树的所有点)进行异或和运算

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
import sys

n, m = map(int, input().split()) # 读取输入的 n 和 m
value = list(map(int, input().split())) # 读取输入的值列表
value.insert(0, 0) # 在值列表的最前面插入 0,根节点为1,索引从1开始
yihuo = [] # 存储异或运算结果的列表
tree = [[] for _ in range(n + 1)] # 初始化邻接表,表示树结构
for i in range(n - 1): # 读取 n-1 次输入
a, b = map(int, input().split())
a, b = min(a, b), max(a, b)
tree[a].append(b) # 在 a 结点的邻接表中添加 b 结点,说明b为a的子节点
for i in range(m): # 读取 m 次操作输入
op = list(map(int, input().split()))
if op[0] == 1: # 如果是操作 1
value[op[1]] = op[2] # 更新点权
else: # 如果是操作 2
x = op[1]#子树根节点
vis = [x] # 把子树存到该列表里
qfront = 0 # 队列的头指针
qend = 1 # 队列的尾指针
while qfront != qend: # 当队列不为空时
if tree[vis[qfront]] != []: # 该节点有子节点
vis.extend(tree[vis[qfront]]) # 将子节点存到子树中
qend += len(tree[vis[qfront]]) # 更新队列的尾指针
qfront += 1 # 更新队列的头指针
ans = value[vis[0]] # 初始化异或运算的结果
for i in range(1, len(vis)): # 遍历访问列表中的结点
ans ^= value[vis[i]] # 对每个结点的值进行异或运算
yihuo.append(ans) # 将异或运算的结果加入到结果列表中
for i in yihuo: # 遍历结果列表
print(i) # 输出每个异或运算的结果

树链剖分

image-20240526112353706

image-20240526112401255

重链部分

image-20240526112422998

image-20240526112438353

image-20240526112446340

image-20240526112453669

image-20240526112501407

image-20240526112511133

image-20240526112520973

image-20240526112528251

image-20240526112534620
image-20240526112540265
image-20240526112547668
image-20240526112554018
image-20240526112600918
image-20240526112606842
image-20240526112612323
image-20240526112617087
image-20240526112624067
image-20240526112632456
image-20240526112636784
image-20240526112641641
image-20240526112646496
image-20240526112653107
image-20240526112657735
image-20240526112703078
image-20240526112709755

树链部分的性质

image-20240526112730804

image-20240526112737253

image-20240526112746989
image-20240526112753152
image-20240526112759297
image-20240526112805144
image-20240526112810692
image-20240526112816453

image-20240526112839302
image-20240526112846421
image-20240526112851218
image-20240526112856579
image-20240526112901873
image-20240526112907428
image-20240526112913595
image-20240526112918708
image-20240526112923449

树形数据结构

树状数组基础

lowbit操作

image-20240526113101030

树状数组

image-20240526113114986

image-20240526113123838

image-20240526113132131

image-20240526113141135

模板题——单点修改,区间查询

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
N = 100100
#初始化树状数组 为0
f = [0] * N

#求下标为x的最小区间长度
def lowbit(x):
return x & (-x)

#树状数组更新函数
def upd(pos,v):#pos:下标 v:值
#在下标为pos的区间加上v 并且在每个有包含pos的大区间加上v
#包含当前区间的大区间:在pos的位置上加lowbit(pos)便能得到大区间
while pos <= n:
f[pos] += v
pos += lowbit(pos)

#得到1-pos位置的前缀和
def get(pos):
res = 0
while pos > 0:#加上组成pos每一个区间的和
res += f[pos]
pos -= lowbit(pos)
return res

n = int(input())
data = input().split()

for i in range(0,n):
x = int(data[i])
#树状数组初始化都为0,需要将原数组每个值通过upd方法将每个值加入树状数组
upd(i+1,x)

m = int(input())
for _ in range(m):
opt,a,b = map(int,input().split())
if opt == 1:
upd(a,b)#更新
else:
#区间[a,b] = [1,b] - [1,a-1]
print(get(b) - get(a-1))
1
2
3
4
5
6
7
8
9
10
11
import os
import sys
N = int(input())
n = list(map(int,input().split()))
m = int(input())
for i in range(m):
s,a,b = map(int,input().split())
if s == 1:
n[a-1] += b
if s == 2:
print(sum(n[a-1:b]))

image-20240526113358856

树状数组

image-20240526113430755

模板题——殷老师排队

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import os
import sys

def lowbit(x):
return x & (-x)
def query(x):
ans = 0
while x:
ans += tree[x]
x -= lowbit(x)
return ans
def add(x,y):
while x <= n:
tree[x] += y
x += lowbit(x)

n, m = map(int,input().split())
a =[0] + list(map(int,input().split()))
tree = [0] * (n + 1)
for i in range(1,n+1):
add(i,a[i])
for i in range(m):
lt = list(map(int,input().split()))
if lt[0] == 1:
x, y = lt[1], lt[2]
add(x,y - a[x])
a[x] = y
else:
x = lt[1]
ans = (2 * x - n - 2) * a[x] + query(n) - 2*query(x-1)
print(ans)

二维树状数组

image-20240526113722203

image-20240526113730769

image-20240526113742110
image-20240526113748208
image-20240526113754750

模板题——

image-20240526113904670

树状数组上二分

image-20240526113950824
image-20240526113958446
image-20240526114007562
image-20240526114020291
image-20240526114102890
image-20240526114113384
image-20240526114124229
image-20240526114131782

模板题——

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
maxn = 110000
ans = [0] * maxn
tree = [0] * maxn
a = [0] * maxn

def lowbit(x):
return x & -x

def add(pos, x):
while pos < maxn:
tree[pos] += x
pos += lowbit(pos)

def query(pos):
res = 0
while pos > 0:
res += tree[pos]
pos -= lowbit(pos)
return res

n = int(input())
nums = list(map(int, input().strip().split()))
for i in range(1, n + 1):
a[i] = nums[i - 1]
add(i, 1)

for i in range(n, 0, -1):
l, r = 1, n
while l <= r:
mid = (l + r) // 2
if query(mid) < a[i] + 1:
l = mid + 1
else:
r = mid - 1
ans[i] = r
add(r, -1)

for i in range(1, n + 1):
print(ans[i], end=' ')

线段树-动态开点

image-20240526121216936

image-20240526121240169

image-20240526121250475

image-20240526121357462

image-20240526121408234

image-20240526121446955

image-20240526121517887

image-20240526121505465

image-20240526121533131

image-20240526121542078

例题

image-20240526121653108

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
struct Tree {
int l, r, n, ls, rs;
}

void update(int &t, int l, int r, int pos, int n) {
if (!t) {
t = ++ cnt;
tree[t].l = l;
tree[t].r = r;
}
if (l == r) {
tree[t].n = n;
return;
}
int mid = (l + r) >> 1;
if (pos <= mid) {
update(tree[t].ls, l, mid, pos, n);
} else {
update(tree[t].rs, mid + 1, r, pos, n);
}
}

int getnum(int t, int l, int r) {
if (!t) {
return 0;
}
if (tree[t].l == l && tree[t].r == r) {
return tree[t].n;
}
int mid = (tree[t].l + tree[t].r) >> 1;
if (r <= mid) {
return getnum(tree[t].ls, l, r);
} else if (l > mid) {
return getnum(tree[t].rs, l, r);
} else {
return getnum(tree[t].ls, l, mid) + getnum(tree[t].rs, mid + 1, r);
}
}

线段树-标记永久化

image-20240526121717724

image-20240526121729855

image-20240526121746997

image-20240526121821681

image-20240526121831175

image-20240526121847400

image-20240526121855524

image-20240526121904894

image-20240526121912575

案例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
void build(int t, int l, int r, int *v) {
_l[t] = l;
_r[t] = r;
if (l == r) {
_v[t] = v[l];
return ;
}
int mid = (l + r) >> 1;
build(t << 1, l, mid, v);
build(t << 1 | 1, mid + 1, r, v);
_v[t] = _v[t << 1] + _v[t << 1 | 1];
}

void update(int t, int l, int r, int k) {
_v[t] += k * (r - l + 1);
if (_l[t] == l && _r[t] == r) {
_laz[t] += k;
return ;
}
int mid = (_l[t] + _r[t]) >> 1;
if (r <= mid) {
update(t << 1, l, r, k);
} else if (l > mid) {
update(t << 1 | 1, l, r, k);
} else {
update(t << 1, l, mid, k);
update(t << 1 | 1, mid + 1, r, k);
}
}

int getv(int t, int l, int r, int sum) {
if (_l[t] == l && _r[t] == r) {
return _v[t] + sum * (_r[t] - _l[t] + 1);;
}
int mid = (_l[t] + _r[t]) >> 1;
if (r <= mid) {
return getv(t << 1, l, r, sum + _laz[t]);
} else if (l > mid) {
return getv(t << 1 | 1, l, r, sum + _laz[t]);
} else {
return getv(t << 1, l, mid, sum + _laz[t])
+ getv(t << 1 | 1, mid + 1, r, sum + _laz[t]);
}
}

线段树维护矩阵

image-20240526124453903

image-20240526124459467

image-20240526124505523
image-20240526124509905

image-20240526124524019
image-20240526124529840
image-20240526124537171
image-20240526124545230

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
void build(int t, int l, int r) {
_l[t] = l;
_r[t] = r;
_v[t] = _E;
if (l == r) {
return ;
}
int mid = (l + r) >> 1;
build(t << 1, l, mid);
build(t << 1 | 1, mid + 1, r);
}

void update(int t, int pos, MATRIX &v) {
if (_l[t] = _r[t]) {
_v[t] = v;
return ;
}
int mid = (_l[t] + _r[t]) >> 1;
if (pos <= mid) {
update(t << 1, pos, v);
} else {
update(t << 1 | 1, pos, v);
}
_v[t] = _v[t << 1] * _v[t << 1 | 1];
}

MATRIX getv(int t, int l, int r) {
if (_l[t] == l && _r[t] == r) {
return _v[t];
}
int mid = (_l[t] + _r[t]) >> 1;
if (r <= mid) {
return getv(t << 1, l, r);
} else if (l > mid) {
return getv(t << 1 | 1, l, r);
} else {
return getv(t << 1, l, mid) * getv(t << 1 | 1, mid + 1, r);
}
}

线段树维护哈希

image-20240526124653609

image-20240526124700848

image-20240526124710439

image-20240526124717847

image-20240526124726230

image-20240526124754241

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
bs1= []
bs2= []
mod1 = 998244353
mod2 = 19260817
bas = 233
s = []

class asdf:
def __init__(self, h1, h2, length):
self.h1 = h1
self.h2 = h2
self.length = length

def __add__(self, c):
return asdf((self.h1 * bs1[c.length] + c.h1) % mod1, (self.h2 * bs2[c.length] + c.h2) % mod2, self.length + c.length)

def __eq__(self, c):
return self.h1 == c.h1 and self.h2 == c.h2 and self.length == c.length

def build(l, r, rt):
if l == r:
s[rt] = asdf(ord(a[l]), ord(a[l]), 1)
return s[rt]
s[rt] = build(l, (l + r) // 2, rt * 2) + build((l + r) // 2 + 1, r, rt * 2 + 1)
return s[rt]

def query(l, r, rt, x, y):
if x <= l and r <= y:
return s[rt]
if y <= (l + r) // 2:
return query(l, (l + r) // 2, rt * 2, x, y)
if x > (l + r) // 2:
return query((l + r) // 2 + 1, r, rt * 2 + 1, x, y)
return query(l, (l + r) // 2, rt * 2, x, y) + query((l + r) // 2 + 1, r, rt * 2 + 1, x, y)

def modify(l, r, rt, ad, ch):
if l == r:
s[rt] = asdf(ord(ch), ord(ch), 1)
return s[rt]
if ad <= (l + r) // 2:
s[rt] = modify(l, (l + r) // 2, rt * 2, ad, ch) + s[rt * 2 + 1]
else:
s[rt] = s[rt * 2] + modify((l + r) // 2 + 1, r, rt * 2 + 1, ad, ch)
return s[rt]

n = int(input())
a = input()
a = "!" + a
bs1.append(1)
bs2.append(1)
for i in range(n):
bs1.append(bs1[i]*bas%mod1)
bs2.append(bs2[i]*bas%mod2)
s = [None] * (4 * (n+5))
build(1, n, 1)

q = int(input())
for _ in range(q):
ls=input().split()
opt = ls[0]
if opt == '1':
ad = int(ls[1])
ch = ls[2]
modify(1, n, 1, int(ad), ch)
else:
l1 = int(ls[1])
r1 = int(ls[2])
l2 = int(ls[3])
r2 = int(ls[4])
x = query(1, n, 1, l1, r1)
y = query(1, n, 1, l2, r2)
if x == y:
print("YES")
else:
print("NO")

可持久化线段树

image-20240526122146448

image-20240526122158524

image-20240526122211004

image-20240526122219620

image-20240526122228761

image-20240526122248198

image-20240526122258158

image-20240526122329330
image-20240526122339224

image-20240526122353739

可持久化线段树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
struct NODE {
int v, ls, rs;
}

struct SEGTREE {
int cnt = 0;
int root[MAXN << 5];
NODE node[MAXN << 5];
}

void SEGTREE::update(int _t, int &t, int l, int r, int pos, int k) {
if (!t) {
t = ++cnt;
node[t].v = node[_t].v;
}
if (l == r) {
node[t].v += k;
return;
}
int mid = (l + r) >> 1;
if (pos <= mid) {
node[t].rs = node[_t].rs;
update(node[_t].ls, node[t].ls, l, mid, pos, k);
} else {
node[t].ls = node[_t].ls;
update(node[_t]).rs, node[t].rs, mid + 1, r, pos, k);
}
node[t].v = node[node[t].ls].v + node[node[t].rs].v;
}

int SEGTREE::getV(int t, int _l, int _r, int l, int r) {
if (!t) {
return 0;
}
if (l == _l && r == _r) {
return node[t].v;
}
int mid = (_l + _r) >> 1;
if (r <= mid) {
return getV(node[t].ls, _l, mid, l, r);
} else if (l > mid) {
return getV(node[t].rs, mid + 1, _r, l, r);
} else {
return getV(node[t].ls, _l, mid, l, mid)
+ getV(node[t].rs, mid + 1, _r, mid + 1, r);
}
}

模板题——区间第k小

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include<bits/stdc++.h>
using namespace std;
#define lc(x) tr[x].l
#define rc(x) tr[x].r
const int N=2e5+6;
int n,m,a[N],b[N];
struct Node {
int l,r,s;//左右儿子,该节点在值域中的个数
}tr[N*20];
int idx,root[N];
void build(int &x,int l,int r)
{
x=++idx;
if(l==r)return ;
int mid=(l+r)>>1;
build(lc(x),l,mid);
build(rc(x),mid+1,r);
}
void update(int x,int &y,int l,int r,int v)
{
y=++idx;
tr[y]=tr[x];
tr[y].s++;
if(l==r)return;
int mid=(l+r)>>1;
if(v<=mid)
update(lc(x),lc(y),l,mid,v);
else
update(rc(x),rc(y),mid+1,r,v);
}
int query(int x,int y,int l,int r,int k)
{
if(l==r)return l;
int mid=(l+r)>>1;
int s=tr[lc(y)].s-tr[lc(x)].s;
if(k<=s)
return query(lc(x),lc(y),l,mid,k);
else
return query(rc(x),rc(y),mid+1,r,k-s);
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
b[i]=a[i];
}
sort(b+1,b+1+n);
int bn=unique(b+1,b+1+n)-b-1;
build(root[0],1,bn);
for(int i=1;i<=n;i++)
{
int id=lower_bound(b+1,b+1+bn,a[i])-b;
update(root[i-1],root[i],1,bn,id);
}
while(m--)
{
int l,r,k;
cin>>l>>r>>k;
int id=query(root[l-1],root[r],1,bn,k);
cout<<b[id]<<'\n';
}
return 0;
}

扫描线与二维数点

image-20240526122721288
image-20240526122730203

image-20240526122740484

image-20240526122748677

image-20240526122757899

二维数点

image-20240526122820094

image-20240526122808099

image-20240526122858486

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include<bits/stdc++.h>
using namespace std;
#define maxn 110000
struct Point{
int x,y;
}point[maxn];
struct Rect{
int p1,p2,q1,q2,id;
}rect[maxn];
int n,m,ans[maxn];
int len[maxn],cnt;
bool cmp(const Point &a,const Point &b){
return a.x < b.x;
}
bool cmp1(const Rect &a,const Rect &b){
return a.p1<b.p1;
}
bool cmp2(const Rect &a,const Rect &b){
return a.q1<b.q1;
}
struct Node{
int sum;
}tree[maxn<<1];
void pushup(int rt){
tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum;
}
void add(int rt,int l,int r,int x){
if(l==r){
if(l==x)tree[rt].sum+=1;
return ;
}
int mid=(l+r)>>1;
if(x<=mid)add(rt<<1,l,mid,x);
if(x>mid)add(rt<<1|1,mid+1,r,x);
pushup(rt);
}
int query(int rt,int l,int r,int x,int y){
if(x<=l&&r<=y){
return tree[rt].sum;
}
int mid=(l+r)>>1;
int ans=0;
if(x<=mid)ans+=query(rt<<1,l,mid,x,y);
if(y>mid)ans+=query(rt<<1|1,mid+1,r,x,y);
pushup(rt);
return ans;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&point[i].x,&point[i].y);
len[++cnt]=point[i].x,len[++cnt]=point[i].y;
}
for(int i=1;i<=m;i++){
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
rect[i]={a,b,c,d,i};
len[++cnt]=a;len[++cnt]=b;len[++cnt]=c;len[++cnt]=d;
}
sort(len+1,len+cnt+1);
int tot=unique(len+1,len+cnt+1)-len-1;
for(int i=1;i<=n;i++){
point[i].x=lower_bound(len+1,len+cnt+1,point[i].x)-len;
point[i].y=lower_bound(len+1,len+cnt+1,point[i].y)-len;
}
for(int i=1;i<=m;i++){
rect[i].p1=lower_bound(len+1,len+cnt+1,rect[i].p1)-len;
rect[i].q1=lower_bound(len+1,len+cnt+1,rect[i].q1)-len;
rect[i].p2=lower_bound(len+1,len+cnt+1,rect[i].p2)-len;
rect[i].q1=lower_bound(len+1,len+cnt+1,rect[i].q2)-len;
}
sort(point+1,point+n+1,cmp);
sort(rect+1,rect+m+1,cmp1);
int pos=0;
for(int i=1;i<=m;i++){
while(rect[i].p1>point[pos+1].x&&pos<=n){
pos+=1;
add(1,1,n,point[i].y);
}
ans[rect[i].id]-=query(1,1,n,rect[i].p2,rect[i].q2);
}
memset(tree,0,sizeof(tree));
sort(rect+1,rect+m+1,cmp);
pos=0;
for(int i=1;i<=m;i++){
while(rect[i].q1>=point[pos+1].x&&pos<=n){
pos+=1;
add(1,1,n,pos[i].y);
}
ans[rect[i].id]+=query(1,1,n,rect[i].p2,rect[i].q2);
}
for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
return 0;
}

平衡树-Splay

image-20240526122034271

image-20240526122046309

image-20240526122055269

image-20240526122104347

平衡树-FHQ_Treap

无旋Treap

image-20240526115339167
image-20240526115350766
image-20240526115359404

无旋Treap的结构

image-20240526115559180

基本操作

image-20240526115614042

image-20240526115623744

image-20240526115634558

image-20240526115644061
image-20240526115650541
image-20240526115656903
image-20240526115703005
image-20240526115710056
image-20240526115715945
image-20240526115721051
image-20240526115727235
image-20240526115734944
image-20240526115740418
image-20240526115746149
image-20240526115751158
image-20240526115755059
image-20240526115800730
image-20240526115804490
image-20240526115808715
image-20240526115813454
image-20240526115817884
image-20240526115823342
image-20240526115830400
image-20240526115835300
image-20240526115839426
image-20240526115847061
image-20240526115851600
image-20240526115858903
image-20240526115904405
image-20240526115910595image-20240526115916421image-20240526115916421image-20240526115926736image-20240526115926736image-20240526115936852image-20240526115936852image-20240526115948947image-20240526115948947image-20240526115959511image-20240526115959511

image-20240526120022163image-20240526120026713image-20240526120026713image-20240526120036416image-20240526120036416

image-20240526120053497image-20240526120100194image-20240526120100194image-20240526120109696

案例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
struct NODE {
int val;
int cnt;
int rev;
int prio;
int size;
int ch[2];
}

struct FHQTREAP {
int root;
int size;
NODE node[MAXN];
}

pair<int, int> split_by_val(int t, int val) {
if (!t) {
return {0, 0};
}
check_rev(t);
if (node[t].val <= val) {
auto tmp = split_by_val(node[t].ch[1], val);
node[t].ch[1] = tmp.first;
update_size(t);
return {t, tmp.second};
} else {
auto tmp = split_by_val(node[t].ch[0], val);
node[t].ch[0] = tmp.second;
update_size(t);
return {tmp.first, t};
}
}

tuple<int, int, int> split_by_rank(int t, int k) {
if (!t) {
return {0, 0, 0};
}
check_rev(t);
int lt, mt, rt;
if (k <= node[node[t].ch[0]].size()) {
tie(lt, mt, rt) = split_by_rank(node[t].ch[0], k);
node[t].ch[0] = rt;
update_size(t);
return {lt, mt, t};
} else if (k > node[node[t]].ch[0].size() + node[t].cnt) {
tie(lt, mt, rt) = split_by_rank(node[t].ch[1], k - node[node[t].ch[0]].size() - node[t].cnt);
node[t].ch[1] = lt;
update_size(t);
return {t, mt, rt};
} else {
lt = node[t].ch[0];
rt = node[t].ch[1];
check_rev(lt);
check_rev(rt);
node[t].ch[0] = 0;
upda[t].ch[1] = 0;
update_size(t);
return {lt, t, rt};
}
}

int merge(int lt, int rt) {
if (!lt) {
return rt;
} else if (!rt) {
return lt;
}
check_rev(lt);
check_rev(rt);
if (node[lt].prio < node[rt].prio) {
node[lt].ch[1] = merge(node[lt].ch[1], rt);
update_size(lt);
return lt;
} else {
node[rt].ch[0] = merge(lt, node[rt].ch[0]);
update_size(rt);
return rt;
}
}

void insert(int val) {
int lt, mt, rt;
tie(lt, rt) = split_by_val(root, val);
tie(lt, mt) = split_by_val(lt, val - 1);
if (!mt) {
mt = new_node(val);
} else {
node[mt].cnt ++;
update_size(mt);
}
root = merge(merge(lt, mt), rt);
}

void del(int val) {
int lt, mt, rt;
tie(lt, rt) = split_by_val(root, val);
tie(lt, mt) = split_by_val(lt, val - 1);
unode[mt].cnt --;
update_size(mt);
if (node[mt].cnt == 0) {
clear(mt);
} else {
lt = merge(lt, mt);
}
root = merge(lt, rt);
}

void reverse(int l, int r) {
int t1, t2, t3, t4, t5;
tie(t1, t2, t3) = split_by_rank(root, l - 1);
tie(t3, t4, t5) = split_by_ranl(t3, r - l + 2);
node[t3].rev = 1;
root = merge(merge(merge(merge(t1, t2), t3), t4), t5);
}

void check_rev(int t) {
if (node[t].rev) {
swap(node[t].ch[0], node[t].ch[1]);
node[node[t].ch[0]].rev ^= 1;
node[node[t].ch[1]].rev ^= 1;
node[t].rev = 0;
}
}

int rank(int val) {
auto tmp = split_by_val(root, val - 1);
int k = node[tmp.first].size + 1;
root = merge(tmp.first, tmp.second);
return k;
}

int kth(int &t, int k) {
int lt, mt, rt;
tie(lt, mt, rt) = split_by_rank(t, k);
int val = node[mt].val;
t = merge(merge(lt, mt), rt);
return val;
}

int pre(int val) {
auto tmp = split_by_cal(root, val - 1);
int k = kth(tmp.first, node[tmp.first].size);
root = merge(tmp.first, tmp.second);
return k;
}

int nxt(int val) {
auto tmp = split_by_val(root, val);
int k = kth(tmp.second, 1);
root = merge(tmp.first, tmp.second);
return k;
}

单调栈

image-20240526114259208

image-20240526114322817

模板题——百亿富翁

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def right_bigger():
ans=[-1]*n
stack=[]
for i in range(n):
while stack and h[stack[-1]]<h[i]:
ans[stack[-1]]=i+1
stack.pop()
stack.append(i)
return ans

def left_bigger():
ans=[-1]*n
stack=[]
for i in range(n-1,-1,-1):
while stack and h[stack[-1]]<h[i]:
ans[stack[-1]]=i+1
stack.pop()
stack.append(i)
return ans

import sys
n=int(input())
h=list(map(int,input().split()))
print(*left_bigger())
print(*right_bigger())

分块

字符串

KMP&字符串哈希

模式匹配

image-20240526100046139

image-20240526100057701image-20240526100110562

KMP算法

image-20240526100136410

image-20240526100148837

image-20240526100157890

image-20240526100211778
image-20240526100221657

模板题——斤斤计较的小Z

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Next = [0] * 1000010
def get_next(T):
for i in range(1,len(T)):
j = Next[i]
while j > 0 and T[i] != T[j]:
j = Next[j]
if T[i] == T[j]:
Next[i + 1] = j + 1
else:
Next[i + 1] = 0
def KMP(s,t):
get_next(t)
ans = 0
j = 0
for i in range(len(s)):
while j > 0 and s[i] != t[j]:
j = Next[j]
if s[i] == t[j]:
j += 1
if j == len(t):
ans += 1
j = Next[j]
return ans
t = input()
s = input()
print(KMP(s,t))
1
print((lambda s: input().count(s))(input()))

字符串哈希

image-20240526100452881

image-20240526100509262

模板题——斤斤计较的小Z

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
t = input()
s = input()
m,n = len(t), len(s)
B = 26
mod = 1000000007
hash = [0] * (n + 1)
for i in range(1,n + 1):
hash[i] = hash[i - 1] * B + ord(s[i - 1]) - ord('A')
hash[i] %= mod

numT = 0
for c in t:
numT = numT * B + ord(c) - ord('A')
numT %= mod

p = (B ** m) % mod
ans = 0
for l in range(1,n +1):
r = l + m - 1
if r > n:
break
if (hash[r] - hash[l - 1] * p % mod + mod) % mod == numT:
ans += 1
print(ans)

Manacher

image-20240526101919972
image-20240526101929004
image-20240526101944468
image-20240526101953533

模板

image-20240526102101694

字典树基础

image-20240526123731966

image-20240526123744464

image-20240526123847593

模板题——前缀判定

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class TreeNode():
def __init__(self):
self.nodes = {}

#插入
def insert(self,s):
curr = self
for i in s:
if i not in curr.nodes.keys():
curr.nodes[i] = TreeNode()
#往下走
curr = curr.nodes[i]

#检查是否为前缀
def pre(self,s):
curr = self
for i in s:
if i not in curr.nodes.keys():
return False
curr = curr.nodes[i]
return True


n,m = map(int,input().split())
tree = TreeNode()
for _ in range(n):
s = input()
tree.insert(s)
for _ in range(m):
t = input()
if tree.pre(t):
print('Y')
else:
print('N')

模板题——依依的瓶中信

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
'''
多个字符串,求公共前缀长度问题,用字典树
同一个字符串不可与自身比较:构建树的时候打标记,查找的时候清除标记,若标记为0,则说明当前在于自己比较,直接返回。
'''

class TreeNode():
def __init__(self):
self.nodes = {} #用于存放以当前点为根的子树
self.value = 1 #每可子树的权值,初始为1

def insert(self,s):#建树
for c in s:
if c not in self.nodes.keys(): #若不存在,则添加该子树
self.nodes[c] = TreeNode()
else:
self.nodes[c].value +=1 #若存在,则该子树的权值+1,
self = self.nodes[c] #进入下一层
#{1,a:{2,b:{2,c:{1,}}},b:{1,c:{1}}}

def commen_pre(self,t): #查找
cnt = 0
for c in t: #该题不用判断c是否存在,因为每个点都存在
if self.nodes[c].value -1 == 0: #如果走到自己独有的节点上时,就返回其与其它子串的公共前缀长
return cnt
cnt += 1
self = self.nodes[c] #进入下一层
return cnt #若自己本身就是某个串的前缀,则返回自己的长度

n = int(input())
S =[]
tree = TreeNode() #实例化根节点
for i in range(n): #建树
s = input()
S.append(s)
tree.insert(s)

for s in S: #查找、统计
print(tree.commen_pre(s))

01tire

image-20240526124139861

image-20240526124148215image-20240526124153033
image-20240526124201442
image-20240526124207236
image-20240526124211551

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
maxn = 210000
ch = [[0]*2 for _ in range(maxn)]
val = [0]*maxn
n, ans, tot = 0, 0, 0

def insert(x):
global tot
now = 0
for j in range(31, -1, -1):
pos = ((x >> j) & 1)
if ch[now][pos] == 0:
tot += 1
ch[now][pos] = tot
now = ch[now][pos]
val[now] = x

def query(x):
now = 0
for j in range(31, -1, -1):
pos = ((x >> j) & 1)
if ch[now][pos ^ 1] != 0:
now = ch[now][pos ^ 1]
else:
now = ch[now][pos]
return val[now]

n = int(input())
for i in range(1, n+1):
x = int(input())
insert(x)
for i in range(1, n+1):
ans = max(ans, query(val[i]))
print(ans)

图论

基础

基本概念

image-20240526124949289

image-20240526124958064

image-20240526125006396

image-20240526125013800

DFS&BFS

image-20240526125134400

image-20240526125142643

DFS模板题——帮派弟位

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
n,m=map(int,input().split())
G=[[] for i in range(n+1)]#bfs和图的结合
rudu=[0]*(n+1) #计数,根结点是没有rudu的
biaoji=[0]*(n+1)
sum=[[0,i] for i in range(n+1)] #注意是二元组,记录子数数量,是先按数量排,再按序号排.然后是包括他自己的,所以初始化为1
for _ in range(n-1):
l,r=map(int,input().split()) #表示序号为l的人附属于r
G[r].append(l) #表示r下面有l 可以看出r和谁相邻
rudu[l]+=1 #表明l头上是有父亲的
for i in range(1,n+1): #找出谁的rudu为0,即找出谁是根结点
if rudu[i]==0:
root=i

def dfs(u):
biaoji[u]=1 #打上标记
sum[u][0]=-1#为什么这里设置成-1,而不是1呢,因为题目要求如果手下相同的,序号小的排在前面,设置成-1就可以这样了。!
for v in G[u]: #遍历和u相邻的每个节点
if biaoji[v]==0: #如果没有打上标记
dfs(v)#遍历和u相邻的节点,就是遍历子节点
sum[u][0]+=sum[v][0] #遍历v子节点的同时,可以把v下的子节点也加上去

dfs(root)
sum.sort()
for i,(x,y) in enumerate(sum,start=1):#输出小明的排列
if y==m:
print(i)
break

image-20240526125335820

image-20240526125344854

BFS模板题——最少操作数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from collections import deque

def bfs(s,t):
'''
:param s: 起点
:param t: 终点
:return:
'''
dis = [-1]*100001
queue = deque()
#1、将起点塞入到队列中,打上标记
queue.append(s)
dis[s] = 0
#2、当队列非空
while len(queue) != 0:
# 2.1 取出队首元素u
u = queue.popleft()
#2.2 判断u是否为终点
if u == t:
return dis[u]
#2.3 将u相连的所有点v,只要v未标记,则入队列
for v in [u-1,u+1,u*2]:
#特判:未越界、未标记
if 0<=v<=100000 and dis[v] == -1:
queue.append(v)
dis[v] = dis[u] + 1
return -1

n,k = map(int,input().split())
print(bfs(n,k))

BFS模板题——混境之地4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import sys

# 请在此输入您的代码
# 3819 混境之地
# BFS遍历 经典题目
"""

"""
from collections import deque # 使用队列
INF = 0x3f3f3f3f # 对应的十进制为:1061109567,一般的数据小于10^9,因此可将其作为一个边界
def BFS(x, y, dist):
# 从(x, y)到每个点的最短时间
queue = deque()
vis = [[0] * m for i in range(n)]
# 1、将起点加入队列
queue.append([x, y])
dist[x][y] = 0 # 更新距离
vis[x][y] = 1 # 打标记
# 2、当队列非空
while len(queue) != 0:
x, y = queue.popleft()
# 对于每个相邻的点,都进行一次判断
for deltax, deltay in [(1, 0), (0, 1), (-1, 0), (0, -1)]:
xx, yy = x + deltax, y + deltay
# 未越界、未标记、非障碍物
if 0 <= xx < n and 0 <= yy < m and g[xx][yy] != "#" and vis[xx][yy] == 0:
queue.append([xx, yy])
dist[xx][yy] = dist[x][y] + 1
vis[xx][yy] = 1


n, m = map(int, input().split())
A, B, C, D = map(int, input().split())
A, B, C, D = A-1, B-1, C-1, D-1
# 输入图
g = [input() for i in range(n)]
E = int(input())
# dist1[i][j]表示起点到(i, j)的最短时间
dist1 = [[INF] * m for i in range(n)] # INF无穷大
# dist2[i][j]表示终点到(i, j)的最短时间
dist2 = [[INF] * m for i in range(n)]

BFS(A, B, dist1) # 起点做一遍
BFS(C, D, dist2) # 终点做一遍
# 判断能否直接走到终点
res = dist1[C][D]
if res <= E:
print(res)
else:
# 枚举所有的圣泉
res = INF
for i in range(n):
for j in range(m):
# 能量E不可小于0,可以等于0
if g[i][j] == 'V' and dist1[i][j] <= E: # 不需要经过多个圣泉
res = min(dist1[i][j] + dist2[i][j], res)
# 如果走不到圣泉
if res == INF:
print('No')
else:
# 初始能量为E,总共距离为res,相当于,后面的res-E需要花费两倍时间,因为需要等待能量恢复
print((res - E) * 2 + E)

拓扑排序

image-20240526125845566

image-20240526125853909

image-20240526125908891image-20240526125916425

模板题——走多远

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import sys

from collections import deque
# INF = 0x3f3f3f3f
# 针对有向无环图,在进行拓扑排序时,可以进行状态转移
def topo():
q = deque()
# 1。将入度为0的点加入队列中
for i in range(1, n + 1):
if ru[i] == 0:
q.append(i)
# 2. 当队列非空
while len(q) != 0:
# 2.1 取出队首元素
u = q.popleft()
# 2.2 对于和u相连的每个点v
for v in G[u]:
# 从u走到v,说明dp[v]可以从dp[u]+1转移
dp[v] = max(dp[v], dp[u] + 1)
# 进行动态规划
ru[v] -= 1
if ru[v] == 0:
q.append(v)

n, m = map(int, input().split())
# 图的存储——邻接表
G = [[] for i in range(n+1)]
ru = [0] * (n + 1)
for i in range(m):
u, v = map(int, input().split())
G[u].append(v)
ru[v] += 1
# dp[i]表示走到i的最长路/最大值
dp = [0] * (n + 1)
topo()
print(max(dp))

模板题——最小字典序排列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import sys

# 3351 最小字典序排列
# 拓扑排序+优先队列
# 需要字典序最小的拓扑序列,只需要将普通队列转换成优先队列即可
from collections import deque
from queue import PriorityQueue


def topo():
q = PriorityQueue()
# 1。将入度为0的点加入队列中
for i in range(1, n + 1):
if ru[i] == 0:
q.put(i) # append改为put
# 2. 当队列非空
ans = []
while not q.empty(): # 判断优先队列q是否非空
# while len(q.queue) != 0:
# 2.1 取出队首元素
u = q.get() # popleft改为put
ans.append(u)
# 2.2 对于和u相连的每个点v
for v in G[u]:
# 进行动态规划
ru[v] -= 1
if ru[v] == 0:
q.put(v)
if len(ans) != n:
print(-1)
else:
print(*ans, sep = ' ')

n, m = map(int, input().split())
# 图的存储——邻接表
G = [[] for i in range(n+1)]
ru = [0] * (n + 1)
for i in range(m):
u, v = map(int, input().split())
G[u].append(v)
ru[v] += 1
topo()

最短路

Floyd

image-20240526130244161

image-20240526130253653

模板题—— 蓝桥公园

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import sys
input=sys.stdin.readline
n,m,q=map(int,input().split())
inf=int(1e18)
dp=[[inf]*(n+1) for i in range(n+1)]
for i in range(1,n+1):
dp[i][i]=0
for i in range(1,m+1):
u,v,w=map(int,input().split())
dp[u][v]=dp[v][u]=min(dp[u][v],w)
#Floyd 模板
for k in range(1,n+1):
for i in range(1,n+1):
for j in range(1,n+1):
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])

for i in range(1,n+1):
for j in range(1,n+1):
if dp[i][j]==inf:
dp[i][j]=-1

for _ in range(q):
s,e=map(int,input().split())
print(dp[s][e])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Floyd 算法  多个起点--多个终点  多源最短路算法(多对多)
# 最简单的最短路径算法
# 存图:最简单的矩阵存图
# 效率不高,不能用于大图

# 动态规划:求图上两点i,j之间的最短距离,按‘从小图到全图’的步骤,在逐步扩大图的过程中计算和更新最短路
# 定义状态:dp[k][i][j]: i,j,k是点的编号,范围1--n
# 状态dp[k][i][j]表示在包含1--k点的子图上,点对i,j之间的最短路
# 状态转移方程 从子图1-k-1 扩展到子图 1-k
# dp[k][i][j]=min(dp[k-1][i][j],dp[k-1][i][k]+dp[k-1][k][j])
# 初始值:i,j直连 就是他们的边长; 若不直连,赋值为无穷大 / 0x3f3f3f3f3f3f3f3f
# 滚动数组优化:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])
# 不经过k 经过k
# for k in range(1,n+1):
# for i in range(1,n+1):
# for j in range(1,n+1):
# dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])
# 只能用于n<300 的小规模图


def floyd():
global dp
for k in range(1,n+1):
for i in range(1, n + 1):
for j in range(1, n + 1):
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])
# 蓝桥公园
# n个点 m条边 q次查询
n,m,q=map(int,input().split())
INF = 0x3f3f3f3f3f3f3f3f
dp=[[INF for _ in range(n+50)] for _ in range(n+50)]
# 记录路径
for i in range(1,m+1):
u,v,w=map(int,input().split())
dp[u][v]=dp[v][u]=min(dp[u][v],w)
floyd()
for _ in range(q):
start,end=map(int,input().split())
# 无法到达
if dp[start][end]==INF:
print(-1)
# 起点终点相同
elif start==end:
print(0)
else:
print(dp[start][end])

# 1-12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
import sys

# 请在此输入您的代码
N, M, Q = map(int, input().split())
weight = [[0 if i == j else sys.maxsize for i in range(N + 1) ] for j in range(N + 1)] # 领接矩阵
for i in range(M):
u, v, w = map(int, input().split())
weight[u][v] = min(weight[u][v], w)
weight[v][u] = weight[u][v]
for k in range(1, N + 1): # N次递推
for i in range(1, N + 1):
for j in range(i + 1, N + 1): # 更新最小值
weight[i][j] = min(weight[i][j], weight[i][k] + weight[k][j])
weight[j][i] = weight[i][j]

for i in range(Q):
st, ed = map(int, input().split())
t = weight[st][ed]
if t == sys.maxsize:
print(-1)
else:
print(t)

模板题——城市间的交易

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
import sys

# 请在此输入您的代码
# 8336 城市间的交易
INF =1e18
n, m = map(int, input().split())
# 产量、成本和售价
a, p, s = [0] * (n+1), [0] * (n+1), [0] * (n+1)
f = [[INF] * (n+1) for i in range(n+1)]
g = [[0] * (n+1) for i in range(n+1)]

for i in range(1, n+1):
a[i], p[i], s[i] = map(int, input().split())
# 邻接矩阵初始化
for i in range(1, m+1):
u, v, w = map(int, input().split())
f[u][v] = f[v][u] = min(f[u][v], w)
for i in range(1, n+1):
f[i][i] = 0

# Floyd
for k in range(1, n+1):
for i in range(1, n+1):
for j in range(1, n+1):
f[i][j] = min(f[i][j], f[i][k]+f[k][j])
# g[i][j]表示城市i的物品运输到城市j可得到的利润 = 城市j的售价 - 城市i的成本 - 从i到j的运输成本
ans = 0
for i in range(1, n+1):
# 求每个城市的利润
cnt = 0
for j in range(1, n+1):
g[i][j] = s[j] - p[i] - f[i][j]
cnt = max(cnt, g[i][j])
ans += a[i] * cnt
print(ans)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os
import sys
n,m=map(int,input().split())
res=[]
for _ in range(n):
a,p,s=map(int,input().split())
res.append((a,p,s))
inf=int(1e10)
path=[[inf]*(n+1) for _ in range(n+1)]
for _ in range(m):
u,v,w=map(int,input().split())
path[u][v]=path[v][u]=min(w,path[u][v])
for i in range(1,1+n):
path[i][i]=0

for k in range(1,n+1):
for i in range(1,n+1):
for j in range(1,n+1):
path[i][j]=min(path[i][j],path[i][k]+path[k][j])
re=0
for i in range(1,n+1):
result=0
for j in range(1,n+1):
if path[i][j]!=inf:
result=max(result,res[j-1][2]*res[i-1][0]-res[i-1][0]*res[i-1][1]-path[i][j]*res[i-1][0])
re+=result
print(re)

Dijkstra

image-20240526131011122

image-20240526131022596

image-20240526131034522

模板题——蓝桥王国

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import sys

# 请在此输入您的代码
# 1122_蓝桥王国_Dijkstra算法
from queue import PriorityQueue # 导入优先队列
from collections import deque

INF = 1e18


def dijkstra(s):
# 返回从s出发到所有点的最短路
# d[i]表示从s到i的最短路
d = [INF] * (n + 1)
# vis[i]表示是否出队列(注:与传统BFS不同)
vis = [0] * (n + 1)
q = PriorityQueue()

# 1.将起点入队列,更新距离
d[s] = 0
# 将距离放在前面,才能对距离使用优先队列
q.put((d[s], s)) # 入队用put()
# 当队列非空
while not q.empty(): # 或者写为: while len(q.queue) != 0:
dis, u = q.get()
# 每个点只有第一次出队列是有用的
if vis[u]: continue
vis[u] = 1 # 出队列打标记
# 对于从u出发,到达v,权重为w的边
for v, w in G[u]:
if d[v] > d[u] + w:
d[v] = d[u] + w
q.put((d[v], v))
for i in range(1, n + 1):
if d[i] == INF:
d[i] = -1
# d.pop(0)
return d[1::] # 从1到最后


# 皇宫编号为1
# 输入
n, m = map(int, input().split())
G = [[] for i in range(n + 1)] # 图的存储:邻接表。此题N为10^5,不能用邻接矩阵存图

for i in range(m):
u, v, w = map(int, input().split())
G[u].append((v, w))
print(*dijkstra(1)) # 列表前面加星号作用是将列表解开(unpacke)成多个独立的参数,传入函数。

模板题——混境之地3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import sys
# 3818 混境之地 Dijkstra
from queue import PriorityQueue
# 数据较大时可以进行如下优化
import sys
input = sys.stdin.readline
INF = 1e18
def get(c):
if c == '.':
return 0
else:
s = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for i in range(len(s)):
if c == s[i]:
return i + 1
# return ord(c) - ord('A') + 1
def dijkstra():
d = [[INF] * m for _ in range(n)]
vis = [[0] * m for _ in range(n)]
q = PriorityQueue() # 创建优先队列
# 1.将起点塞入队列
d[x1][y1] = 0
q.put((d[x1][y1], x1, y1))
# 2.当队列非空
while not q.empty():
dis, x, y = q.get()
if x == x2 and y == y2:
return dis
# 每个点只有第一次出队列是有用的
if vis[x][y]:
continue
vis[x][y] = 1 # 出队列打标记
for d elta_x, delta_y in [[1, 0], [0, 1], [-1, 0], [0, -1]]:
xx, yy = x + delta_x, y + delta_y
# 判断未越界、未标记、非障碍物
if 0 <= xx < n and 0 <= yy < m and vis[xx][yy] == 0 and Map[xx][yy] != "#":
if d[xx][yy] > d[x][y] + get(Map[xx][yy]): # 写一个get函数获取权重
d[xx][yy] = d[x][y] + get(Map[xx][yy])
q.put((d[xx][yy], xx, yy))
return INF
# 输入
n, m = map(int, input().split()) # 地图大小
x1, y1, x2, y2 = map(int, input().split()) # 起始点坐标
x1, y1, x2, y2 = x1 - 1, y1 - 1, x2 - 1, y2 - 1
# 地图
Map = [input() for i in range(n)]
e = int(input()) # 剩余能量
# 如果能量支撑到达终点,返回Yes,否则,返回No.
if e >= dijkstra(): # 不传参,使用全局变量
print('Yes')
else:
print('No')

生成树

Kruskal

image-20240526131621641

image-20240526131631028

模板题——繁忙的都市

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def kruskal():
# 初始化
n, m = map(int, input().split())
Map = []
for _ in range(m):
u, v, w = map(int, input().split())
Map.append([w, u, v]) # 注意第一个参数是边权
Map.sort()

# 并查集
p = list(range(n+1))
def root(x):
if x != p[x]:
p[x] = root(p[x])
return p[x]

# 非连环时更新
_sum, _max = 0, 0
for w, u, v in Map:
root_u = root(u)
root_v = root(v)
if root_u != root_v:
p[root_u] = root_v
_sum += 1
_max = max(_max, w)
return _sum, _max
print(*kruskal())

Prim

image-20240526131818064

image-20240526131825567

image-20240526131840546

image-20240526131848626

模板题——繁忙的都市

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import os
import sys
n,m=map(int,input().split())
e=[]
for _ in range(m):
u,v,w=map(int,input().split())
e.append((w,u,v))
#边按照权重进行排序
e.sort()
#需要一个并查集
p=list(range(n+1))

def findroot(x):
if x==p[x]:return x
else:
p[x]=findroot(p[x])
return p[x]
ans=0
#进行遍历所有的边,进行合并:
for w,u,v in e:
#只要u和v不在同一集合内就可以进行合并:
rootu=findroot(u)
rootv=findroot(v)
if rootu!=rootv:
p[rootu]=rootv
ans=max(ans,w)
print(n-1,ans)

image-20240526132045604

打赏
支付宝 | Alipay
微信 | Wechat